
PLASMA PHENOMENA AT MAGNETIC NEUTRAL POINTS

under the direction of

P.A. Sturrock

(NAS-CR-142059) PLASMA PHENOMENA AT N75-1635-4
AGETIC NEUTRAL POINTS Final Report
(Stanford Univ.) 25 p HC $3.25 CSCL 20I

Unclas
G3/75 08953

FINAL REPORT

NASA Grant NGR 05-020-512

National Aeronautics and Space Administration

Washington, D.C. 20546

February 1975

Institute for Plasma Research
Stanford University
Stanford, California

11>'



STAFF

NASA Research Grant NGR 05-020-512

PRINCIPAL INVESTIGATOR

P.A. Sturrock, Professor

FACULTY

V. Petrosian

RESEARCH ASSOCIATE

C.E. Newman



PLASMA PHENOMENA AT MAGNETIC NEUTRAL POINTS

The object of the research carried out under this grant was to gain

a better understanding of phenomena observed in experiments carried out

with the plasma focus device by exploiting, if possible, the similarities

between these phenomena and those exhibited by solar flares and flare-

related events. It was thought that our knowledge and understanding of

the solar phenomena and the mechanisms which give rise to them would

provide valuable insight into the problem of explaining similar plasma

focus phenomena.

With this in mind we chose to study one of the least understood

aspects of the plasma focus: the origin and production of hard X-rays

(energies > 100 keV). The similarities between the observed plasma focus

hard X-ray spectrum and the spectra of solar impulsive X-ray bursts are

several, as has been previously pointed out in the literature (Elton and

Lie 1972). Both require a nonthermal energy source (kTe - 1 keV for the

plasma focus); the energy spectra of both have a power law form

N(E) ccE , (1)

where = 3.5 1; and the angular distribution of both spectra are

observed to be anisotropic (Jalufka and Lee 1972; Petrosian 1973). In

addition both spectra are presumably due to electron bremsstrahlung

radiation.

The study was carried out in two phases. The first entailed finding

an acceleration mechanism by which electrons could attain the hundred-

kilovolt energies necessary to produce X-rays in that energy range.

Current models of solar flares envision an induced electric field produced
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by the motion of field lines toward the reconnection region; this

v/c X B field accelerates particles in the vicinity of the (magnetically)

neutral region toward the solar surface where they radiate and give rise

to impulsive X-ray bursts by bremsstrahlung (Sturrock 1968; deJager and

Kundu 1963). With this in mind we looked for an induced electric field

for the plasma focus and found that, in the final stages of the collapse

phase, one should expect axial electric fields, opposite in direction to

the field applied by the external voltage source. This electric field

is produced by the rapidly imploding current sheet, and its magnitude is

given by jv/c X Bs ,  where Bs is the magnetic field just behind the

current sheet. Since

21
Bs = Bse cr 

s

where r is the distance of the current sheet from the axis and I is the
s

current in the device, this field increases in value as the collapse phase

continues. For typical values of current (I P 10 amp), velocity

(v - 2 X 107 cm/sec), and minimum radius (rsmin - 1 mm), the induced

electric field reaches a magnitude of 400-500 kV/cm -- much larger than

the externally applied field (e 10 kV/cm). In the ugual mode of operation

of the focus device -- center electrode positive -- the induced electric

field then points toward the center electrode and, hence, accelerates

electrons away from that electrode. The magnitude of this field is

sufficient to produce electrons energetic enough to radiate X-rays in

the hundred-kilovolt range.

The second part of our study was then to investigate the bremsstrahlung

radiation to be expected from electrons accelerated by the mechanism

2



mentioned above. Here again we drew upon our previous work on solar X-ray

bursts. Petrosian (1973) and Brown (1972) have studied the radiation

produced by a beam of electrons -- with a power-law energy spectrum --

incident upon the solar surface. Their calculations account for most

of the features of the solar bursts. We then undertook to perform a

similar calculation for the plasma focus. Assuming the induced electric

field creates a beam of electrons on the axis of the device, we first

determined the shape of the energy spectrum required for the beam to pro-

duce the on-axis hard-X-ray spectrum reported by Lee et al. (1971); this

spectrum was found to be a power law in energy (N(E) c E-, a = 2.5 ± 1).

We then calculated the angular distribution pattern to be expected from

this beam and compared it with the observation reported by Jalufka and

Lee (1972); good agreement was found. Finally, using an estimate of the

total energy in hard X-rays of 10- 2 joules (F. Hohl, private communication),

we calculated the total number and energy of accelerated electrons required.

Less than ten percent of the electrons in the plasma focus were required

to be accelerated above 100 keV. but their total energy was about 104 joules

which is a significant fraction of the total energy of the device.

The work outlined above is discussed in greater detail in a paper by

Newman and Petrosian (1974) which is attached as Appendix A. In conclusion,

we can say that there are indeed features of solar flare processes and the

plasma focus which are analogous. Our studies have shown one of these.

Thus, there still remains the prospect of using laboratory experiments to

study plasma processes on the sun as well as in other astrophysical systems.

In order to determine whether or not this prospect is indeed a viable one,

more research devoted to the study of similarities between solar and

laboratory plasma phenomena will be necessary.
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On the Production of Hard X-Rays in a Plasma Focus

by
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ABSTRACT

We consider a model of the plasma focus in which large axial

electric fields are induced by the imploding current sheet during the

final few nanoseconds of the collapse phase. This field provides a

mechanism for creation of a beam of electrons of highly suprathermal

energies. For such a beam, having a power-law form in energy, we

calculate the bremsstrahlung radiation above 100 keV to be expected from

it either from electron-deuteron collisions in the focused plasma itself

or when the beam reaches the walls of the device. Upon comparison with

experimental results, we conclude that the walls are the more likely

source of these hard x-rays and also find qualitative agreement of the

expected angular distribution of x-rays with experiment.
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I. Introduction

The plasma focus device has been the subject of extensive experimen-

tal and theoretical research in recent years, and many of its features are

now reasonably well understood.1-8 A schematic of the apparatus used by

NASA-Langley researchers, who have carried out the most extensive hard x-ray

measurements to date, is given in Figure 1. The operation of the device

can be separated into four fairly distinct phases: (1) the breakdown phase,

which is initiated by closing the switch AB, causing the gas in the con-

tainer to undergo dielectric breakdown and creating current flow between

the two concentric electrodes; (2) the rundown phase, in which this current

sheet is accelerated to the right by J X B forces; (3) the collapse phase,

which is a continuation of the rundown phase but which begins when the

current sheet reaches the end of the center electrode and undergoes rapid

radial collapse, trapping, heating, and compressing some of the gas;

(4) the focus phase, which is the end result of the collapse phase and in

which one is left with a hot (Te 107 K), dense (ne > 1019 cm-3 )

plasmoid located on the axis and having a diameter - 1 mm and a length

- 1-2 cm. The gas used in the device is deuterium, normally at an initial

pressure of 3-5 Torr, and the energy source is a 20 kv - 25 KJ capacitor

bank; the center electrode is positive in normal operation.

Of the four phases, the focus phase is the most interesting as well

as the least understood. The plasma is hot and dense enough for D-D

fusion reactions to take place with consequent production of neutrons.

This phase also entails x-ray production -- both thermal (k - 1 keV) and

nonthermal hard (k = 100-500 keV) x-rays. The focus phase has a lifetime

of about 100 nsec. The most puzzling of the features of the focus phase

are the relatively long lifetime, the anisotropy of the observed neutron
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flux, and the production mechanism for the hard x-rays. It is the last of

these topics which will be the subject of this paper.

Before we proceed with the description of our model for hard x-ray

production, it is instructive to list the salient features of the observed

hard x-ray spectrum for which any proposed model should be able to account:

(1) the hard x-rays are produced in a burst about 40 nsec in length coinci-

dent (or nearly so) with the neutron production, which occurs at the time

of collapse to minimum volume; (2) the spectrum of the hard x-rays in the

forward (axial) direction is roughly a power law -- dN(k) k-
dk

k > 100 keV and v 3.5 1; (3) the angular distribution is markedly

anisotropic with a broad maximum occurring between 300 and 750 from the

forward direction; (4) estimates of the total energy radiated in hard

x-rays give a value of - 10 ergs.j32 It is interesting to note that

the observed energy spectrum in the plasma focus is similar to that ob-

served in solar x-ray bursts associated with solar flares which has been

noted elsewhere. Thus it is possible that an understanding of the x-ray-

producing processes in the plasma focus may lead to a better understanding

of those in solar flares.

There are three candidates for the source of the observed hard x-rays

-- the face of the center electrode, the focused plasma itself, and the

walls of the aluminum vacuum vessel. In his paper on the simulation of the

plasma focus, Potter proposes that the collapsing current sheet gives rise

to an induced v X B electric field of strength 10' v/cm on the axis;

this field strength is far above that needed for electron runaway so a

substantial number of electrons are accelerated to high energies toward

the anode; the hard x-rays are then a result of anode bombardment by these
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electrons. There are two objections to this proposed mechanism. First,

the anode can be eliminated as a source by using a hollow center electrode;

when this is done, the hard x-rays are still observed, and the spectrum

differs very little from the solid center electrode case. Second, as we

will see in the next section, the direction of this induced electric

field is toward the center electrode, hence electrons are accelerated

away from the anode. Thus we are left with the other two as possible

sources for the hard x-rays; we treat both cases in this paper.

Our model, then, is the following: the fast radial collapse of the

current sheet produces an induced axial electric field which accelerates

electrons away from the anode; in the final stages of collapse, this field

rises to a sufficiently high value in the trapped plasma to accelerate

thermal electrons to a few hundred keV; these electrons then radiate by

bremsstrahlung either in collisions with ions in the plasma itself or upon

colliding with the walls of the container. The model is described in

detail in Section II; in Section III we treat the two cases -- radiation in

the focus and radiation in the walls -- and explore the consequences of

each; in Section IV we present our conclusions and suggest an experiment to

ascertain the actual hard x-ray source.

II. Theoretical Model

We assume that the current in the sheet is constant throughout the

collapse phase; this is consistent with experimental observations which

show the current to have a roughly constant value ' 500 KA until the focus

stage is reached, at which time the current drops rapidly.1l2 4 We also

assume for simplicity that the current sheet is infinitely thin; this
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latter assumption is not crucial since our results would be changed very

little were we to assume small but finite sheet thickness. Neglecting

displacement current the magnetic field at any point is given from Ampere's

law,

4
VXB=--J . (1)

c

We assume J is in the rz-plane (from symmetry) so that B is toroidal

and given by

Be(r,z) = 2 [t-t0(rz)] (2)

where I is the total current, 9 is a Heaviside function of its argument

and t0 (r,z) is the time at which the moving current sheet passes through

the point (r,z). Thus the magnetic field at a given point vanishes until

the durrent sheet reaches that point, at which time it jumps to the value

2I
B - and remains at that constant value throughout the remainder of
0 cr

the collapse phase.

The electric field may then be found from Faraday's law

-4

X - c t - c B 8[t-t 0 (r,z)]6 . (3)

From (3) we see that the component of E tangential to the sheet also has

a discontinuity at the sheet. Referring to Figure 2, we see that as we

pass from region A behind the sheet to region B ahead of the sheet, the

jump condition satisfies the following condition

B J v vJ
E _X - B -
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or

B -A v
E -E =c X B , (4)

where v is the velocity of the current sheet. Now from (3) we see that

V X E = 0 in both regions A and B separately so that E is derivable

from a potential in each region; however, we know that

SEA dt= VO ()
CE

where V0  is the applied voltage and CE and OE denote the center and

outer electrodes. This equation holds for any path lying entirely within

region A.

Let us now consider the.final stages of collapse and examine the focus

region. We take as parameters

r- 1 mm

v 2 X 107 cm/sec

I - 500 KA

all of which are typical values obtained in the laboratory. Since, near

the focus, the current sheet is nearly along the z-axis, we can take v

to have an inward radial component only, and we find

E B Ez A 2 X 1 0  esu = -200 kV/cm . (6)

Since (5) must be satisfied by EA, with V -1 20 kV and the path length

for the integral ~ few cm, we conclude that IEzBI >> EzA and thus

BEz f -200 kV/cm. This axial electric field is thus strong enough to



accelerate electrons to a few hundred kilovolts as long as r is small

enough, i.e., during the last stages of collapse. (Note that if r = 2 mm,

B
E z -100 kV/cm, which is still a high enough value to give significant

acceleration; the sheet travels from r = 2 mm to r = 1 mm in 5 nsec

which is sufficient time to accelerate electrons to a relativistic velo-

city with these field strengths.) However, these electrons are accelerated

away from the center electrode, not toward it. as Potter proposed;7 ions

presumably will be accelerated toward the anode during this stage of

focus development. Evidence for axial particle acceleration away from

the anode has been reported by Lee,11 who noted that after a number of

runs, a spot was formed on the vacuum vessel wall where it intersects the

axis (the point designated by C in Figure 1).

That the axial field is opposite in sign from the field due to the

source voltage has also been pointed out in a paper by Gary and Hohl, 6

who made extensive revisions to Bernstein's model for ion acceleration.,

Bernstein found a jump condition analogous to that given by (4), but he

assumed Ez = 0 at r = 0 as a boundary condition. As is evident from

the arguments given here, we feel that such an assumption is unjustified.

We should also mention that this electric field is opposite in sign

to that which accelerates ions in the model of Gary and Hohl9 since ions

in that model are also accelerated away from the anode. This apparent

contradiction is resolved if we note that the accelerating field of Gary

and Hohl is due to I, not the motion of the current sheet. The field

due to I is somewhat smaller in magnitude (-~fewkV/cm) than the field

computed above, hence it does not become important until the motion of the

sheet ceases. Thus the acceleration of electrons and production of x-rays
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occurs during the last few nanoseconds of the collapse phase while the

ion acceleration and neutron production takes place at the beginning of

the focus phase. This extremely short time interval between these two

events then accounts for the apparent coincidence of the neutron and hard

x-ray pulses.

Given now that we have a strong axial field capable of accelerating

electrons to mildly relativistic energies, we now turn to the treatment

of their subsequent bremsstrahlung radiation.

III. Bremsstrahlung Radiation

In this section we calculate the expected hard x-ray production by

the accelerated electrons via bremsstrahlung. Most of the aspects of this

problem have been studied by various authors in connection with the

impulsive solar x-ray bursts. We shall make frequent use of the results in

the paper by Petrosian. Briefly, the electrons lose energy via elastic

collision and bremsstrahlung as [cf. equations I.1 and 1.13)

E = -2r2 nZc nA/ , dbrem = -drem nck (7)
coll O brem brem

where r0  is the classical electron radius, n and Z are the density

and charge of the target particles, B is the velocity of the electrons

(in units of c the speed of light), k is the energy of the bremsstrah-

lung x-ray (all energies will be expressed in units of electron rest

mass energy mc2), A is given in equations 1.2 and 1.3, and dabrem is

the bremsstrahlung cross section. In what follows we shall use the

non-relativistic approximation

We shall denote the equations and figures from this paper by a prefix I.
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16 2  2 1 , (8)
brem 3 O E 1 - -k/E

where E is the electron kinetic energy and a = 1/137, and the approxi-

mation [cf. equation 1.29 and 1.30]

k da 16 r 2 Z2 (1-k/E)2  (9)brem 3 O
k

Since the spectrum of the observed hard x-rays can be approximated

by a power law we assume a truncated power law electron spectrum:

dN(E) = N 6 dE/E 1  for E > E1  , (10)

and dN(E) = 0 for E < E1, so that N is the total number of the

accelerated electrons and

6
e --NE (11)

is the total energy of these electrons. We use these expressions to derive

first the required values of ee, N and 6 assuming that the x-rays are

produced in the focus and/or in the aluminum walls. The expected angular

distributions are discussed at the end of this section.

a. X-Ray Production in the Focus

In the focus, (n 6 1020, Z = 1, tnA = 30) the "mean free path" for

100 keV electrons (E = 1/5, p = 0.6) defined as X -cp E/E s E 2 /[2Tr2 ~ nA]

P 50 cm, so that the electrons will escape the focus region with little

loss of energy, and the thin target calculation applies here. Let J(k)
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be the differential spectrum of the emitted x-rays and 8(k) = J(K')dk'

be the integral energy spectrum (observations show that for k > 100 keV,
k-X-2

(k) k -v2 v = 3.5 ± 1, and 8(100 keV) % 10- 2 joules). We find it

simpler to express our results in terms of the latter quantity.

It is easy to show that equations (7) to (10) give

k k>E
E (6+1)(6+2) ' 1

8(k) - fdN(E) dk dbremdk c- 316 r 0 nd 2
E1 1 2 -+ Jd k<E

E1 k 1 + 2 1 2

(12)

Here P(k) is expressed in units of mc and d is the differential

path length in the focus. For k > E1 this spectrum is a power law with

index -6 and flattens out rapidly for k < E 1 . Assuming E 1 ; 100 keV

and Ind-, 2 X 1020 cm-2 we find for e(100 keV) and the bremsstrahlung

yield

- 2 0 (E ) -64 x 1020 1) 2.X 10 (6-1) 100 keV(100 keV) (-)N joules Y(E )= - X(6+1)(62)- 1 P1. 6 (1) (6+2) E

(13)

Comparing these with observation we obtain

6 Ce 1.5 1 N 1 (4 to ) X 108 particles . (14)

This is a stringent requirement, since it implies that more than ten

percent of the total electrons in the focus [ vr2fnd&L6x 1018(n/1020cm-)

must be accelerated to-energies greater than 100 keV, with a total energy

of Se P 4 X 10 joules, which is greater than the total energy input of
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the device. For E1 P 200 keV, N is reduced by a factor of 2 but e

remains the same. Furthermore, as shown below, these electrons will

emit much more hard x-rays when interacting with the walls of the device,

unless they are decelerated to lower energies before reaching the walls.

Note that the quantity fndt for the gas outside the focus is about

18 -2
10 cm so that x-ray emission between the focus and the walls is

negligible.

B. X-Ray Production in the Walls

In the aluminum walls (thickness - 0.2 cm), n 6 X 1022, Z = 13,

tnA = 14 [cf. Evans 3] the 't"mean free path" of 100 keV electrons is less

than 0.02 cm, so that the thick target calculations apply here. In this

case it can be shown that the spectrum is [cf. equations 1.20 and 1.28]

(k/E )-6+2 4> E(k/E1) (6-2)(8-1)8 , k > E1 '

16 aZN 2
8(k) E (15)

3 21in 1

i E I+ 2~L_ 8+, k < E
-l 6-1 E 1  6 EJ 1

This spectrum is also a power law with index -8+2 for k > E 1 and

flattens out rapidly for k < E1 . For E f 100 keV we obtain

2.9 X 10 - 17 4.6 x o3
(100 keV) = (-1)(-2) N joules and Y(100 keV) = 6-2) (16)

Comparing these with observations we find

16 -2
6= 3. Il , N=(1.3 to 0. 6 )x 016 1e= 10 /Y(100 keV)= (10 to 100)joules

(17)
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For El = 200 keV the required number of electrons and their energy will

be reduced by an order of magnitude.

As is evident from equations (14) and (17) it is more efficient to

produce the x-rays in the walls. Most of the energy in this case is

deposited in the wall. If the electrons remain on the axis, an energy

of about 20 joules will be deposited on a spot on the axis of the device.

After 500 discharges, this energy amounts to about 104 joules which could

create a hole of about one centimeter in diameter in the 2 mm thick aluminum

wall as observed by Lee.11

c. Angular Distribution of the X-Rays

So far we have treated the problem in the non-relativistic approxi-

mation where the angular distribution of bremsstrahlung radiation from a

beam of electrons peaks in directions perpendicular to beam axis. However,

for relativistic energies, the radiation is concentrated in the forward

direction along the axis. For semi-relativistic particles (E - 100 keV)

the radiation peaks in a direction between the forward direction and

directions perpendicular to the beam; for example, 100 keV x-rays emitted

by electrons with 150 keV peak in a direction about 40 degrees from the

axis [cf. Figure I.2a]. For a power law electron spectrum of 6 5

the 100 keV photons will have a flat distribution between 0 to 600 from the

axis then begin to decrease rapidly at wider angles [cf. dashed lines in

Figure I.4]. This effect is independent whether the target is thin or

thick. However, for a thick target the collisions will disperse the beam

14
and cause a wider angular distribution. This agrees approximately with

the observed distribution. We do not attempt a more rigorous comparison

of our model with the experimental results because these results are still
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tentative, having been obtained only once and with large experimental

uncertainties.

IV. Summary and Conclusions

We have shown that large axial electric fields, capable of accelerating

electrons to mildly relativistic energies, can be induced by the rapid

radial collapse of the current sheet in the plasma focus. The observed

anisotropic angular distribution and the energy spectrum of the hard

x-rays from the plasma focus appear to show that the mechanism for the

production of these x-rays might be bremsstrahlung from a directed beam

of such electrons. If the radiation is produced in the focus, then a

very efficient acceleration mechanism is required whereby a considerable

fraction of electrons in the focus are accelerated carrying most of the

energy input of the device. This appears to be unlikely. In addition,

these electrons must be stopped or slowed down to lower energies before

reaching the walls of the device. Otherwise, they will produce one hundred

to a thousand times more x-rays at the walls. Even if these electrons are

slowed down to lower energies, say to few keV's, each discharge will

deposit more than 103 joules of energy in the walls which must have obvious

observable consequences after each discharge if the beam is not dispersed,

or after repeated discharges, even if the beam is completely dispersed

before reaching the walls. For this reason, we consider bremsstrahlung in the

focus as an unlikely mechanism for the hard x-ray production.

On the other hand, if the x-rays are produced in the wall along the

axis of the device, only a small fraction (less than 0.1%) of the electrons

need to be accelerated carrying a few joules of energy. The observed

damage on the wall appears to favor this hypothesis. However, in the
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experiment for the determination of the angular distribution of the x-rays,

the detectors were focused on the focus region rather than the spot on

the wall. If the angular resolution of the detector was sufficiently

fine to distinguish between these two sources, then x-ray emission from

the spot on the wall must also be ruled out.

It would be desirable to repeat the angular distribution experiment

with higher spectral and spatial resolution for further testing of this

model. In particular, an additional detector focused on the spot on the

wall at right angles to the axis could distinguish easily between these

two sources. Another test of the bremsstrahlung radiation would be

determination of the polarization characteristics of these x-rays. In

directions perpendicular to the beam axis, the percentage of radiation

polarized perpendicular to the plane of the electron beam and line of

sight could be as high as 90 percent for production in the focus and

lower (60 percent) for production in the wall because of scattering.14

Polarization up to 60 percent has been observed in the solar impulsive

x-ray bursts.
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Figure Captions

Figure 1. Schematic diagram of experimental apparatus on which hard
measurements were carried out. Also depicted are the
processes leading to the formation of the plasma focus
and the direction of the induced electric field, which is
described in Section II. The walls of the vacuum vessel
are made of 2mm-thick aluminum and the point C denotes
the point at which a spot was formed - evidently due to
bombardment by energetic particles and leading to leaks
in the vacuum system after a few hundred runs. 1 1

Figure 2. Reference diagram for computing the jump condition for the
electric field across the current sheet during collapse.
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